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ALTITUDE WIND TUNNEL INVESTIGATION OF THE PROTOTYPE J40-WE-8 

TURBOJET ENGIME WITHOUT AFTERBURNER 

By John E. McAulay and W o l d  R.  Kaufmam 

An investigation was conducted in   the  Lewis a l t i tude  w i n d  tunnel 
t o  evaluate  the performance characterist ics of the  prototype J40-WE-8 
turbo  jet  engine  without an afterburner. Data were obtained  with an 
electronic  control  operative and inoperative. The performance data were 
obtained at al t i tudes from 15,000 t o  60,000 f e e t  and flight Wch num- 
bers of 0.17 t o  1.68. 

Fixed-exhaust-nozzle data showed that in  general  increasing alt i-  
tude  resul ted  in  an increase  in   corrected  net   thrust   a t  a given  correc- 
t ed  engine  speed. These data  also. shuwed tha t  above a cdrrected  engine 
speed of 7000 r p m  a change i n   a l t i t u d e   a t  a given  corrected  engine  speed 
had no effect  on the  corrected air flow. A method is presented t o  
define  the  effect of changes i n  engine  operating and f l ight .condi t ions 
on the  pmping and a i r - f low characterist ics and the conibustion e f f i -  
ciency. This made it possible  to  calculate  thrust  and fuel  f low f o r  
conditions  other than those at which the data were obtained. These cal-  
culated  values were i n  close agreement with  values  obtained  in  the  direct 
investigation. 

INTRODUCTION 

A s  par t  of a  comprehensive investigation of the J40 turbojet  
engine  conducted at the W C A  Lewis  a l t i tude  wind tunnel,  the  steady- 
s t a t e  engine  performance of the  prototype J40-WE-8 turbojet  engine  with- 
out  afterburner w a s  obtained and i s  presented  herein.  Preliminary  per- 
formance t e s t s  of an ea r l i e r  model, the XJ40-WE-6,,revealed  a  severe 
surge  condition in the  coqressor  at  high  corrected  engine  speeds  (ref- 
erence 1). A basic  redesign of the compressor  and other modifications 
in   the compressor and the combustor were incorporated i n  the XJ40-WE-6 
turbojet  engine  (references 2 and 3). In  t h i s  report the modified 
engine is designated  "the  prototype J40-WE-8 without  afterburner. " 

Performance data presented  herein were obtained over a range of 
engine  speeds at f ive  f ixed  set t ings of the  variable-area  exhaust  nozzle. 
These data were obtained t o  45,000 f e e t  and at 
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flight Mach numbers of 0.62 and 0.99. D a t a  were also  obtained with an 
open exhaust  nozzle a t  a l t i tudes of 50,000 cad 55,000 f ee t  a t a  f l i gh t  
Mach  number of 0.62. In  addition, some data were obtained a t  f l i g h t  
Mach numbers as high as 1.68 at  al t i tudes of 55,000 and 60,000 fee t   by .  
a different method of simulation where52 engine-inlet  temperature and 
pressure, but  not  tunnel s'tatic .or a l t i tude  ambient pressure,  are  repra- 
duced. The use of the  engine pumping characterist ics made it possible 
to   calculate  engine  performance fo r  a greater  range of f l i gh t  Mach  num- 
bers and altitudes than were experimentally  investigated. 

The data obtained at fixed  sett ings of the  variable-area  exhaust 
nozzle  are  presented  in  both  graphical and tabular form. In  addition, 
data with  an  electronic  engine  control  operative  are also presented i n  
tabular form. - . .  

APPARATUS AND INSTALLATION 

The prototype J40-WE-8 turbojet engine dthout   af terburner  has a 
static  sea-level  thrust   rating of 7500 pounds -at an engine  speed of 
7260 rpm and a turbine-inlet  temgerature of 18-85O B (1425O F). A t  th is  
operating  condition  the a i r  flow  is.approxim&ely 142 pounds per  second. 
The enginecomponents  included a dividebinlet   duct  {fig.  l), an  eleven- 
stage  axial-flow compressor,  an annular conibustor, a two-stage  turbine, 
a t a i l  pipe, and a variable-area exhaust nozzle. Withbut the a f te r -  
burner the engine length is  186 inches and the maximum diameter 43 inches. 
The dry weight of the engine and accessories is about 3000 pounds. 
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The engine was mounted on a wing section that spanned the  20-foot- T 

diameter test section of the al t i tude  wind tunnel  (fig. 2 ) .  Dry re f r ig-  
erated air was supplied  to  the engine from the  tunnel make-up air system 
through a duct which was divided and connected t o  the  engine  inlets. 
Throttle  valves  installed  in  the main duct  permitted  regulation of t h e .  
pressure at the  engine inlet. 
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Engine thrust and drag measurements by the  tunriel  balance  scales 
were made possible  by  the  frictionless  sl ip  joint   located in the  main .. 

duct  upstream of the  engine.  Instrumentation for measuring pressures 
and temperature8 was instal led a t  various  stations in the-  engine  (fig. 3). 
Pressure measurements a t  -the exhaust--nozzle in l e t  were available for on ly  
a s m a l l  portion of the investigation.  Turbine-inlet radial temperature 
distributions were determined  by ten  traversable  sonic-flow  thermocouple 
probes. 

. .  
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c Engine  performance data  presented  in  this  report  were obtalned a t  
the  flight  conditions  shorn  by  the  following table: 

Altitude Fl ight  Mach  number 
( f t  1 

0.17 1.68 1.46 1.19 0.99 0.92 0.62 

15XL03 

x *  45 
x *  x x *  35 

x *  

55 X J  J J 
50 X 

J J J  J J  60 
J 

X control data 
*fixed  exhaust-nozzle data 
'rated  speed,  "militexy" and "normal" 

turbine-inlet  temperatures 

The control  scheduled data included  open-exhaust-nozzle  operating 
l ines .  The fixed-exhaust-nozzle  data were obtained a t  projected  exhaust- 
nozzle  areas of 367, 421, 449, 479, and 535 square  inches a t  several 

data are  given  in  table I. Similarly, the  control data are  given in  
table I1 b u t  are not  presented  graphically  because  standard inlet tem- 
peratures  could not be  maintained for  several   f l ight  conditions.  

.1 engine  speeds f o r  each  exhaust-nozzle  area. The fixed-exhaust-nozzle 

Y 

In order t o  obtain the various  flight  conditions,  the air flow 
through the make-up air duct was thrott led  froa  amroximately  sea-level 
pressure t o  a t o t a l  pressure at the  engine  inlet  corresponding t o  the 
desired  f l ight  Mach  number at a given alt i tude.   For mst of the runs, 
the  tunnel  pressure was  s e t   a t  the desired  a l t i tude anibient pressure. 
In  the  calculation of flight Mach number, complete  ram-pressure  recovery 
at the  engine  inlet was assumed. h e  temperature of the inlet air 
approximated NACA standard v a l u e s  except that the minfmum temperature 
obtained was  about 440' R. The engine f u e l  used was MIL-F-5624 having 
a lower heating  value of 18,700 Btu  per pound and a hydrogen-carbon 
ratio of 0.171. The fuel  temperature  entering  the  engine  fuel  system 
was about 80° F. 

The a l t i tude   a t  which standard  altitude  pressure  could be main- - tained is limited  by  exhauster  capacity. To extend  the  range of the 
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investigatron  to  htgher  f l ight Mach numbers and al t i tudes,  a technique 
was used  wherein the  engine  performance  could be. obtained  irrespective 
of tunnel  pressure, as long as the  tunnel  pressure was less  than  the 
exhaust-gas total   pressure.  The engine-inlet  pressures and tempera- 
tures  which would ex is t  at these  flight  conditians were reproduced while . .  - 
the pressure  altitude i n  the  tunnel  test  section was maintained at m y  
convenient  value. The variable,-area exhaust nozzle was adjusted as 
necessary t o  obtain  the  desired  values of engine  temperature  ratio. As 
indicated in  reference 4, for given e n g i n e - i n l e t .  canditions and fixed . . . 4 ." 
engine  speed,  the  engine air  flow, fue l  n o w ,  and pressure  ratio are not 
dependent on the ambien+air pressure  for  opemtion at a given  engine- 
temperature  ratio. The thrust was calculated from measured values of 
turbine-outlet  pressure and temperature and engine air flow  by the 
method given i n  appendix A. . .  " 
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RESULTS AND DISCUSSION " 

Generalized  Performance " 

Typical engFne performance data obtained a t  a flight Mach  number " 

of 0.62 and a t  two exhaust-nozzle  areas  are shown for   a l t i tudes from - 

15,000 t o  55,000 fee t  i n  figure 4. The two exhaust-nozzle  areas  chosen 
were the  largest and smallest at which a f u l l  range of engine  speeds . .- 

was obtained. These data have been  corrected by-the factors  6 and 8 
derived in  reference.5 and defined in  appendix A. 

. . .. 
" 

- 

The effect  of a l t i tude on corrected air f l a w  is  presented  in  f ig- t 
ures 4(a) and 4 ( b ) .  A t  corrected  engine  meeds above 7000 r p m ,  the 
data generalized  to a single  curve; however, at corrected  engine  speeds 
below 7000 r p m ,  the  corrected air f l o w  decreaaed a8 al t i tude was 
increased a t  a given  corrected  engine  speed. 

The corrected fue l  fJow (figs.   4(c) and 4(6)), the  corrected  spe-.. . .. "- 

c i f i c  fuel consumption (figs.   4(e) and 4 ( f ) . ) ,  and the  corrected  exhaust- 
gas  temperature  (figs.  4(g) and 4(h))  increased a s  al t i tude was increased 
a t  a given  corrected  engine  speed. 

" 

Decreases i n  compressor  and turbine  efficiencies  resulting from the 
lower  Reynolds numbers a t  the higher alt i tudes  required an increase in 
corrected  enthalpy rise per pound across.  the e - ~ i n e  t o  mgintain the s q  
corrected  engine  speed.  Higher colnpressor pye.ssure.ratios  resulted frgm 
the  higher  corrected  temperatures a t  the  turb-ine  inlet  (reflected by 
turbine-outlet  temperatures). A t  high  corrected  engine  speeds,  the 
corrected air flow  did  not  vary  appreciably with compressor pressure .. 
r a t i o  and no shift in   the compressor characteristic  curves  occurred  with 
alt i tude; hence, the corrected air  flow generalized. - A t  lower corrected . 
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engine  speeds (below 7000 r p m ) ,  the   e f fec t  of higher compressor pressure 
r a t i o  and the   sh i f t  in the  conpressor  characteristics resulted in lower 
corrected air  flows  for higher al t i tudes.  

Examination of the data shows that corrected  enthalpy rise across 
the engine  increased w i t h  a l t i tude  as a result of the higher corrected 
temperature rise across the engine even a t  low speeds where the correc- 
ted air flow  decreased.  This  corrected  enthalpy rise required an 
increase in corrected fuel flow. However, as the  conkustion  efficiency 
i s  adversely  affected  by  both  high  altitudes and low engine speeds (ref-  
erence s) ,  the   e f fec t  of altitude on corrected  fuel  f low (and corrected 
spec i f ic   fue l  consumption) w i l l  be  even greater than would be  expected 
from consideration of changes in  corrected  exhaust-gas  temperature and 
air flow,  especially a t  low corrected  engine  speeds. 

Except a t  low corrected  engine  speeds, the corrected  net thrust 
increased as a l t i tude  was  increased a t  a given  corrected  engine  speed 
( f igs  . 4( i) and 4( j ) ) . Even at  low corrected  engine  speeds this trend 
w-as evident a t  a l t i tudes  above 50,000 feet. These trends  in  corrected 
net   thrust ,  which are similar t o  those shown in  reference 7, are due t o  
changes in   corrected air flow,  exhaust-gas  temperature, and turbine- 
i a e t  pressure which are af'f'ected by  decreased component eff ic iencies  
w i t h  increased  altitude. A t  lower corrected  engine speeds where the 
change In corrected net thrust with a l t i tude  i s  less ( i n  some cases 
nonexistent) the decrease in  corrected air  flow  offsets the increase  in 
corrected  exhaust-gas  temperature and pressure. 

Performance Maps 

The engine  performance maps presented i n  figure 5 were cross- 
p lo t ted  from data shown i n  figure 4 and sFmllar data for  other  exhaust- 
nozzle  areas. A map was constructed  for  each of the four   f l igh t  con- 
di t ions at which data f o r  a f u l l  range of exhaust-nozzle areas and 
engine  speeds were obtained. The coordinates of these maps are exhaust- 
gas temperature and engine  speed with Unes of constant  net thrust, 
specific fuel consumption, and projected  exhaust-nozzle area superiqosed. 
Also shown are l i nes  that indicate the exhaust-gas  temperature that gives 
l imiting turbine-inlet bulk and loca l  temperatures. The l imit ing  local  
turbine-inlet  temperature i s  reached when the temperature at any radial 
posit ion at the turbine inlet equals the manufacturer's  specified limit 
f o r  that par t icular  radial position  (reference 3). Curves shown above 
t h i s  latter l imi t  were extrapolated. 

The  minimum spec i f ic   fue l  consungtion  encountered at these  four 
fl ight  conditions was about  1.20 pounds per hour per pound thrust and 
occurred a t  an altitude of 35,000 feet and a f l i g h t  Mach nmiber of 0.62 
(f ig .   5(c)  ). A t  the  other flight conditions  investigated,  the minimum 
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specific fuel consurqption m s  about 1.25 pounds per hour per pound 
thrust .  A t  high  engine  speeds,  closing  the=ex&ust]nozzle from an area-  
of 421 t o  367 square  inches  resulted, i n  general,in an increase i n  
specif ic   fuel  consumption. This  increase i s  .assoc&ted .Kith a reduc- 
t i on  in canpressor  efficiency as the compressor pressure  ratio is  
increased  (reference 2 ) .  

.. . 

- -  - . .. " .. 
" 

AB total   pressure at the engine inlet w a s  reduced,t.he exhaust-gas 
temperature at which limiting  turbine-inlet  local  temperature  occurred 
approached the  exhaust-gas  -temperature at  wgich limiting turbine-inlet 
bulk temperature vw. e-ncougtered (fig. 5) .  - -  A s - . f i - t a t , d  i n  -reference 3, 
this is  caused by the closer matching of the €ilr'bLne-inlit-t~en@erature 
profiles  with the manufacturer's  specified  profile a6 the  engine-inlet 
total   pressure was decreased. I 2  t h e . a c t d " a n & t &  recommended pro- 
f i l e  were identical ,  the exhaust-gas  temperature w d d ,  of course, be 
the same f o r  either turbine-inlet limit. Because of  mismatching of  
these  profiles at low.altitudes, o n l y  about 95 percent of the maximum 
net thrust possible  could  be  realized  without  exceeding  the  local 
turbine-inlet temperature limit (f ig .  5( a) ) .  

In  the  region above 75 percent of maximum net thrust fo r  any f l i g h t  
condition, no large  difference in specifd&-~~c%~sui@tTon was obtained 
far any particular schedule of e x h a w t m z l e  area and engine  speed. 
Therefore,  the  exhaust-nozzle  schedule us&d i-s -nkk . .cri t ical   insofar  as 
steady-state performance i s  concerned.  Acceleration and thrust  mod-- 
t i on  are therefore the determining factors in the  manufacturer ' s selec- 
t i on  of an exhaust-nozzle  schedule. The steady-state  exhust-nozzle 
schedule that allows-the  exhaust  nozzle  to remain open until rated 
engine  speed i s  reached  appems t o  give  the best transient performance 
because: (1) the maximum rate of acceleration i s  possible, and ( 2 )  
large  increases  in  thrust may be obtained  almost  instantaneously  by 
closing  the  exhaust  nozzle at any engine  speed.  For e-le, at an 
engine  speed of 6500 r p m ,  &n al t i tude of 15,000 fee t ,  and a f l i gh t  Mach 
nurdber  of 0.62, it is possible  to  obtain  aIiod.-55  percent  thrust modu- 
lation. Using the previous example as a q d - i t a i v e ,  but  not  quantita- 
tive  guide, by  operating w i t h  the  exhaust  nozzle open at the reduced 
thrust  levels  required  during a landing  approach  or crriise condition, a 
large and almost  instantaneous thrust increase i-s available in case of 
a "wave-off" or similax maneuver. 

-. 

Use of?Pumping Characteristics and Combustion Efficiency  to 

Calculate  Engine Performance 

It i s  desirable  to  be  able  to  calculate  engine performance at 
f light  conditions  ather  than  those  presented i n  this report. In order 
t o  do t h i s  from pumping characterist ics,  it % n e c e s s a r y   t o  define the 
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ef fec t  of a change in engine  operating and flight condition on several 
engine  parameters. To meet t h i s  requirement,  the effect of Reynolds 
nuuiber on engine punping  and air-flow character is t ics  must be deter- 
mined. It i s  also necessary that the  variation of combustion efficiency 
and effect ive  veloci ty   coeff ic ient  of the exhaust nozzle be  defined i n  
terms of engine parameters that are readily  available.  In the  following 
paragraphs these relations w i l l  be discussed  and the curves  necessary 
to   ca lcu la te  engine  performance will be  presented. It is Important t o  
note that engine  pressure  ratio does not  include  inlet-duct Losses. 
Performance including  duct  losses may be calculated if these  losses  are 
known. 

Engine a i r  flow  and  pressure  ratio. - Engine a i r  flow and pressure 
r a t io   a r e  shown as functions of engine  temperature r a t i o  for  constant 
corrected  engine  speeds at a Reynolds nmtoer inhx of 0.222 i n  f ig-  
ures 6(a) and 7(a),   respectively.   Correction  factors which account fo r  
the effect  of Reynolds rider on the air-flow and  pumping character is t ics  
are presented i n  figures 6(b) and 7(b) .  The correction  factor  for  cor- 
rected air f l o w  is the r a t i o  of corrected air flow at  the Reynolds num- 
ber  index in question  to the corrected a i r  flow at a Reynolds number 
index of 0.222. Similarrly, the correct ion  factor   for  engine  pressure 
r a t i o  is the r a t i o  0.f pressure   ra t io  a t  the Reynolds number index i n  ques- 
t ion   to   the   p ressure  r a t i o  at a Reynolds number index of 0.222. Selection 
of the  reference Reynolds nurriber index (0.222 in   th i s   case)  was made i n  
order  t o  u t i l i z e  the high  corrected  engine  speeds and engine  temperature - ratios  investigated at th i s  Reynolds number index. 

Combustion efficiency. - Combustion efficfency is  presented as a 
L function of a combustion parameter WaT6 in   f i gu re  8. The res t r ic t ions  

*sed by the derivation of this parameter, which is  given in appen- 
dix B, are that the  corrected  engine speed be about 75 percent of ra ted 
speed or greater, and that the  engine  temperature r i s e  be 700' F or 
more. 

Fuel flow. - With the   a s suq t ion  of uni ty  combustion efficiency, 
engine  temperature rise is  plot ted as a function of fue l - a i r   r a t io  with 
l i nes  of constant  engine-Met air tenperature in figure 9 (data from 
reference 8).  The use of this figure i n  conjunction with f igure 8 
makes it possible   to   calculate  an actual  fuel-air r a t i o .  All the vari- 
ables required  to  obtain fuel flow and ideal thrusts (no ta i l -pipe or 
nozzle  losses) have been  presented i n  figures 6 through 9. 

Effective  velocity  coefficient.  - An effect ive  veloci ty   coeff ic ient  
given in  figure 10 i s  required  to  calculate  actual  values of thrust .  
An explanation of the  parameters  used on this f igure i s  given  in appen- 
dix A. . 
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A sample problem demonstrating the use of f igures 6 through 10 is 

given in appendix C. 
. .  .. . 

" - 
I 1  

Engine  Performance Obtahed from Pumping Characteristics . .  
" 

and Direct  Experimental Data 

Net thrust and fuel flow for the military and normal engine  operat- 
ing  conditions  are  presented as.a function of true  airspeed for seven 
a l t i tudes   in  figures ll t o  13, The data presenteZ3.&f€&Fe 11 were 
calculated by mean8 of the pumpl& c&a.racteris-bicd 'and sGpplementarg 
curves  (figs. 6 t o  10). Data presented on figure 12 were- ob-kained from 
experimental data, using  the method described earlier which avoids the 
necessity of duplicating  flight anibient pressure - i? i  the  tunnel  test 
section.  Figure 13 presents  both  experimental-  and  calculated data. The 
experimental  data shown i n  figures 12  and 13 were obtained a t  flight 
Mach numbers as high as 1.68. For mili tary and normal conditions, the 
engine  speed is 7260 r p m  and the exhmxt-gas  temperatures  are 1580' and 
1440° R ,  respectivel- These temperatures co&es$ond t o  tu rb ine- in le t  
temperatures of 1885~~*and 1750' R .  

" .  .._._."_ 

" . . 

. .. .. 

. .  

These data show that at  low f l i gh t  speeds (fig.  =(a)) the  net 
thrust  decreased as f l i g h t  speed was increased from 0 t o  about 275 knots. 
Above f l i gh t  speeds of about 275 h o t s   ( f i g s .  11 t o  13), the  net   thrust  
increased with flight speed a t  an increasing  rate up t o  a f l i g h t  speed 
of  about 900 knots.  Further  increase in flight speed  resulted i n  a 
decrease i n  the rate a t  which net  thrust   increased  (figs.   l l(d)  to 13). 
This latter trend i s  associated wtth the  relation of in le t -a i r  temper- 
ature t o   f l i g h t  sseed and the  effect  of reduced corrected  engine  speed 
and engine  temperature r a t i o  on the  engine  pressure ratio. Fuel f l o w  
increased with fl ight speed over the.. .entire range of f l i g h t  speeds. 

- . . . . . . - . 

. .  

A comparison of experimental data and data  calculated from  punping 
characterist ics i s  possible at an altit- o fe6UpJ0  fee t   ( f ig .  13). 
For the  curves showing military operation, ..the m a x i m % .  discrepancy i n  
both  net thrust and fuel flow is  about 2 percent a t  high f l i g h t  speeds. 
The curves  sharing normal operation  are  not in as  close agreement, the 
maximum difference  being  about 4 percent at high flight speeds. 

SUMMARY OF RESULTS 

Fixed-exhaust-nozzle  performance  data were  obta-d a t  a l t i tudes as 
high as 55,000 f ee t  and flight Mach numbers as high  as 0.99. In general, 
increasing the alt i tude  resulted in an increase i n  corrected  net  thrust 
a t  a given  corrected  engine  speed. Above a corrected  engine  speed of 
7000  rpm, changing al t i tude at a given  corrected  engine  speed had no 

" _. . . - 

I 

.. " 

L .  

I 
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ef fec t  on corrected a i r  f l o w .  However, below a corrected  engine  speed 
of 7000 r p m ,  the co%gcFed air flow  decreased as a l t i t ude  was  increased 
it a given  corrected  engine speed. For the four  f l ight  conditions a t  
which engine  performance maps were obtained, the minimum spec i f ic   fue l  
consumption was  about 1.20 pounds per hour per pound  of thrust and 
occurred a t  an altitude of 35,000 feet  and a f l i g h t  bhch nmiber of 0.62. 
The ef fec t  of exhaust-nozzle area and engine  speed on spec i f ic   fue l  
consuurption was snail. a t  thrust   levels  above 75 percent of maximum. 
The selection of a schedule of exhaust-nozzle area and engine  speed i s  
therefore  primarily dependent on the consideration of the acceleration 
characterist ics.  

A method I s  presented  to define the ef fec t  that  a change i n  engine 
operating and flight cpndition would have on engine-pumping and air-flow 
character is t ics ,  and conibustion efficiency. T h i s  permits the calcula- 
t i o n  of net thrust and fuel   f low f o r  conditions at which data points 
were not  obtained. These calculated  values  agreed  closely with the 
actual  values  obtained. Curves of th rus t  and fuel   f low  for   both m i l i -  
t a r y  and  normal operating  conditions are shown fo r   a l t i t udes  from 15,000 
t o  60,000 feet and f l i g h t  speeds of zero t o  ll00 knots. 

Lewis Flight Propulsion  Laboratory 

Cleveland, Ohio 
National  Advisory Committee f o r  Aeronautics 
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SYMBOLS AND METHODS OF CALCULATION 

Symbols 

The following symbols are used in  this report: 

cross-sectianal area, sq f t  

thrust scale  reading, l b  

effect ive  veloci ty   coeff ic lent ,   ra t io  of scale jet t h rus t   t o  rake 
jet thrust   calculated at turbine out le t  

external  drag of ins ta l la t ion ,  l b  

j e t  thrust, -1b 

net thrust, l b  

acceleration due. to   gravi ty ,  32.2 f t /sec2 

. - . -. . . . 

constant 

Mach nuniber 

engine  speed, r p m  . . .  .. - 

t o t a l  pressure, lb/sq f t  abs 

stat ic   pressure,  lb/sq f t  ab6 

gas  constant, 53.4 f t -lb/ ( l b  ) (%) 

to.t;al  temperat-pe, si . . . . " " __  . . .. . . "" 

s t a t i c  temperature, OR . . . - . . -. . . " 

veloci ty ,   f t /sec o r  bo*-- ." - - -. . - . . . . - " " -. "" 

air flow, lb/sec 

gas flow, lb/sec 

fuel flaw, lb/hr 

r a t i o  of specific heats 

. .  
1 

. " .. . - .. 

.. 
" 

-.-. 

" 1 

. -  

- " 
" " 

" 

. ." 
. -. - 

. 

.- 
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n 
2 
N 

- 
6 r a t i o  of engine-inlet   absolute  total   pressure  to  absolute static 

pressure of NACA standard atmosphere at sea l eve l  

qb combustion efficiency 

p density,  slugs/cu f t  

8 r a t i o  of engine-inlet  absolute  total  temperature  to  absol-ute  static 
temperature of NACA standard atmosphere a t  sea l eve l  

Cp r a t i o  of absolute  viscosity of air at the  engine inlet t o   t h e  abso- 
lu te   v i scos i ty  of NACA standard atmosphere a t  sea  level  

Reynolds number index 

Subscripts : 

e 

ef f 

i 

- r 

6 
.I 

0 

1 

2 

3 

4 

5 

6 

7 

equivalent 

effect ive 

indicated 

rake 

scale 

free stream 

inlet duct 

engine i n l e t  

compressor i n l e t  

compressor outlet   or combustor i n l e t  

combustor out le t   or   turbine  inlet  

turbine  outlet  

exhaust -no zzle   inlet  
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Method of Calculations 

Fl ight  Mach number. - The f l i g h t  Mach nuuiber, when complete ram- 
pressure  recovery was assumed, was calculated from the  expression 

. .  ." . "  
- 

% =  
to 
4 w w 

Airspeed. - The following  equation was uged to  calculate  airspeed: 
. ,--- -.. 

Temperature. - Total  temperatures were determined  from  indicated 
temperatures by the following  relation: 

T i  (5) T =  

where 0.85 i s  the impact recovery  factor  for  the  type of thermocouple 
used. 

A i r .  flow. - The air flow was determined from pressure and tempera- 
ture  measurements by the following equation: 
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Gas flow. - The gas flow downstream of the conibustor was Calculated 
a6 follows: 

Scale thrust. - Values of thrust based on scale  measurements were 
M 

01 

cc) found for  both  the data with  fixed-exhaust-nozzle areas and control- 
IC scheduled data. The j e t  thrust of the ins ta l la t ion  w a s  determined from 

the  balance-scale measurements by  using the following  equation: 

When a ta i l  rake was installed,   the  drag of the rake was added t o  the 
right side of the,equation. The last  two terms of this expression  repre- 
sent  the momentum and pressure  forces on the %sta l la t ion  a t  the s l i p  
jo in t  in  the inlet-air duct. The external drag of the ins ta l la t ion  was  
determined w i t h  the engine  inoperative. 

Scale  net   thrust  was obtained  by  subtracting the free-stream momen- 
tum of the inlet a i r  from the scale jet  thrust: 

- 
Calculated thrust. - For the data shown in figures ll through 13, 

thrust was calculated from conditions at the  turbine  outlet.  For  the 
experlmental data, turbine-outlet  conditions were measured; while,  for 
data calculated-from pumping characterist ics,   the  turbine-outlet  condi- 
t ions were predicted from data at other  flight  conditions. 

Ideal jet thrust  w a s  calculated from conditions at the  turbine 
outlet   by the following eqwtion: 

I n  a perfect converging  exhaust  nozzle, 
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where Vn, &, and  pn are the velocity,  the  area, and the static.pre6-. 
sure a t  the vena contracta. The term V e f f / q / w  is called the effec- 
t ive  veloci ty  parameter and is  a function of the  exhaust-nozzle  pressure 
r a t i o  and speclfic heat ra t io ,  as given in figure 14. A further  discus- 
sion of the  effectiye.velocity concept I s  given i n  reference 9. 

. .-.- 

- c, 
~" 

" - 
" 

.-.- 

The thrust calculated  by  equation (8) i s  an ideal thrust  in that .. - 

it does not  include  total-pressure  losses i p  the t a i l  pipe and the 
exhaust  nozzle. These losses may most easily  be considered by means of w 
an emct ive   ve loc i ty   coef f ic ien t   ( f ig .  lo), which I s  defined as the 
r a t i o  of scale jet thrust t o   j e t  thrust calculated at turbine-outlet 
candit.ions. The effective  velocity  coefficient was obtained from the ,I_ 

data given i n   t a b l e s  I and I1 and was found to be  primarily a function 
of turbine-outlet Mach  nlzmber. Inasmuch as it is  impractical t o  caLcu- 
late  turbine-outlet Mach  number by means of a static  pressure,  a more . ." 

pract ical  means was used. From continulty  considerations 

. %  
w 

. .  

. .-. 

" - --- 

- "  
- 

. .  

where K is a constant  equal to  the  effective  f law  area  at   the  turbine 
out le t .  In the data presented i n  figure 10, in which effective  velocity ' . 

coefficient Cv i s  shown as a function of turbine-outlet  gas-flow 

parameter w ~ , ~ / T J P ~  the  constant K has been  included i n  the values 
of the gas-flow  parameter on the  abscissa. 

. .. - 
- 

- .. . -. -. -. .. 
" 

. u "" 

For the  data  for which calculated rather than  scale  values of' " . -. - . " 

thrust were used, the exhaust-nozzle  pressure r a t io s  pO/p6 may be 
below the limit imposed by  the  tunnel equipment. However, effective 
velocity  coeffi-cimte based on a convergent.  nozzle....are o n l y  sl ight ly  . . 

affected at exhaust-nozzle  pressure  ratios below c r i t i ca l .  

. . . . . . . - -7 

- -  -1 - ." ~ _.. ~.. - , . " 

" -. "" .- . 3 
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M 
M 
PC cu 

DERIVATION OF COMBUSTION PARAMEER, war, 

If the  turbine  nozzles  are assumed choked, 

Experimental resu l t s  from various engines show that i n   t h e  range of 
operation  where-the  turbine  nozzles are choked the following  relation 
is  va l id :  

.. " - .. . - 

Cmbining  the two equations yields 

.. 
or 

Since Wg E Wa and Pg P4 

Because the Mach nunibers are low a t  the coDibustor i n l e t  ( M C  0.2), the  
t o t a l  temperature and pressure  can  be used with l i t t l e  error in place of 
t he   s t a t i c  temperature and pressure BO that 

p4 
P4 = - 

GT4 

and 
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Substituting  equations (E) and (17) Eor pressure and velocity,  resgec- 
t ive ly ,   in  P4TJV4 yields the  following  equation: 

p4T4 c1 K2A4WaT6 
- m  

v4 K, 2R 
L 

The parameter P4TJV4 has often  been used t o  correlate conibustion 
efficiency. Because all-the terms in   the  r ight   s ide of equation (17) 
are constants  except WaT6, it may be used i n  place of P4TJV4 t o  
correlate canibustion efficiency. 

.. . 

. . .  
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sAMpL;E PROBLEM 

The thrust  and the  f u e l  flow are calculated  for  the  conditions of 
run 54 of table  11. The following quantities are 'knm: 

M 
M 
LC cu 

Po = 222 D/sq f t  T6 = 1532' R 

P2 = 288 B/sq f t  N = 7260 rpm 

T2 = 435' R 

From these quantit ies  the following parameters may be calculated: 

N/@= 7934 rpm f i =  0.915 

Ts/T2 = 3.50 S/Cp@ = 0.168 

6 0-1361 Vo = 610 f t /sec 

8 = 0.838 

- From figures 6(a) and  7(a), 

P 148.2 lb/sec 
= 0.222 

From figures 6(b) and 7(b), 

Correction  factor for pressure  ratio = 0.992 

Correction  factor f o r  corrected a i r  flow = 1.000 

Theref ore 
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In   order   tu   calculate   fuel  flow and thereby  obtain gas flow, the 
following steps  are  required: 

war, = (22.04)  (1532) = 3.38X104 ( lb )  (%>/set 

From figure 8, 

% = 0.928 

The engine  temperature r ise i s  

Tg - T2 = 1097' R 

The ac tua l   fue l -a i r   ra t io  is 

The gas flow i s  .. ... 
... 

. a . .  
- . .  .~ 

= (22.04)(1.0164) 

P 22.40 lb/sec 

The next steps in  the  calculation of thrust are as follows: 

pO/P6 = 222/609 . . . . .  

I. 

From figure 14, . .  . . .  " . . .  - 
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N 
4 w w 

L 

- Veff = 1.328 (32.2)(53.4)(1532) 

= 2155 ft/sec 

The ideal or  rake jet  thrust i s  

Fj,r = ('g,6/g) 'eff 

= -  22' 40 (2155) 
32.2 

= 1499 lb 

The inlet momentum i s  

= 418 lb 

The ideal  or  rake  net  thrust I s  

= 1499 - 418 

= 1082 lb 

The fuel   f low i s  

= (3600)(22.04)(0.0164) 

= 1301 lb/hr 

Values of calculated  ideal  net  thrust and fuel   f low are 1082 pounds 
and 1301pounds  per hour, respectively. The values from the data are 
1087 pounds and 1292 pounds per hour. Therefore,  the  calculated  values 
a r e  0.37 percent low fo r  ideal net thrust and 0.70 percent  high  for  fuel 
flow. 
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In  order t o  calculate an actual o r  more r e a l i s t i c  thrust, it is 
necessary to  obtain an effective  velocity  coefficient.  The following 
steps are required: 

Using this  value and figure 10, 

Cv = 0.940 

The actual  jet thrust is 

= (0.940)  (1499) 

= 1409 l b  

The actual net thrust is 

= 1409 - 418 
= 991 l b  

The spec i f ic   fue l  consumption is 

It should be noted that for any engine condition for which the 
performance may be  desired,  the corresponUing engine speed and exhaust- 
gas  temperature must be xithin  the  physical   capabili t ies of the exhaust 
nozzle.  This  can be verified  by the data of figure 5. 
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. .. 

Figure 1. - View looking downstream of inlet of prototype J40-WE-8 turbojet   engine.  
.. 
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Figure 2. - Prototype J40-WE-8 turboJet engine Installed in test section cf altitude vlnd tunoel. 
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(a) Corrected air flow; exhaust-nozzle  area, 421 square Inches. 
. .  - .. 

FIpe-4. - Effect of altitude on corrected  engine  perfnrmance  at flight Mach  number of 0.62. 
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(c) Corrected fuel flow;  exhaust-nozzle area, 421 square inches. 

. 
(a) Corrected fuel flow$ exhaust-nozzle  area, 535 square  inches. 

Figure 4. - Continued.  Effect of altitude  on  corrected  engine  performance  at  flight  Mach 
number of 0.62. 



32 NACA RM E52K10 

...- 
(e) Corrected 'specific fie1 consumption; exhaust-nozzle 

area, 421 square inches. 
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(h) Corrected  exhaust-gas  temperature;  exhaust-nozzle area, 535 square  Inches. 
Figure 4. - Continued.  Effect of altitude on corrected  engine  performance at flight Mach 

number of 0.62. 
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(I) Corrected net thrust: exhauat-nozzle area, 4 2 1  aquare inchee. 

Figure 4. - Continued. Effect of altitude on corrected engine performance at a flight  Mach 
number o r  0.62. 
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(j) Corrected  net  thrust;  exhaust-nozzle area, 535 square Inches. 
Figure 4. - Concluded. Effect of  altltuffe on corrected engine performance at a Plight Mach 

number of 0.62. 

. 



36 NACA RM E52K10 

1600 

1500 

1400 

1300 
E Y  

900 

I 

800 

- 
Constant projected 

exhaust-nozzle 
area, eq in .  

5000 5400 5800 6200 . - . " m O  7000 7400 
Engine speed, N, r p m  

(a) Altitude, 15,000 feet; fU&t Mach number, 0.62; equivalent inlet- 
air temperature, 468' R. 

Figure 5. - Engine performance i j k p s .  

" ." 

. -  

c 
- "  



NACA RM E52Kl0 6 37  

Engine speed, N, r p m  

(b) Altitude, 35,000 feet;  flight Mach number, 0.99; equivalent  inlet- 
air temperature, 393' R. 

Figure 5. - Continued.  Engine  performance maps. 
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Figure 5. - Continued.  Engine  perfornwnce maps. 
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Figure 5. - Concluded. Engine performance maps. 
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(b) Correction factor for Reynolds number index. 

Figure 7. - Variation of engine pressure ratio with Reynolds number index, corrected engine 
a p e d ,  and engine temperature ratio. 
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Figure 9. - Engine  temperature  rise as function of fuel-air  ratio.  Lower  heating 
value, 18,700 Btu per pound; kydrogen-carbon ratio, 0.171. 
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Figure 10. - Variation of effective velocity ccrefficlent with turbine-outlet gas- 
flow parameter. 
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Figure ll. - Variation of net  thrust and fuel flaw with  flight  speed 
obtained by calculation frm pumping characteristics. Engine 
speed,  7260 rpm.  
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(c)  Altitude, 35,000 feet. 

Figure ll. - Continued.  Variation of net  thrust and fuel flow with  flight  epeed 
obtained by calculation frau pumping  characteristics.  Engine  speed, 7260 rpm. 
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(d) Altitude, 40,000 feet. 

Figure U. - Continued. Variation of net thrust and fuel flow withflight speed 
obtained by calculation from pumping characteristics. Engine speed, 7260 r p m .  
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Figure n. - Concluded. Variation of net  thrust and fuel flow with flight speed 
obtained by calculation from pumping characteristics. Engine speed, 7260 rpm.  
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Figure 12. - Variation of net thrust and fuel flow  with flight speed from 
experimental data. Altitude, 55,000 feet; engine speed, 
7260 qm. 
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Figure 13. - Variation of net  thrust  and fuel flow with  flight  speed  obtained frm 
experimental data and data  calculated frcan pumping characteristics.  Altitude, 
60,000 feet; engipe speed, 7260 rw. 
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Figure 14. - Varlatlon of effective veloaity parameter w l t h  pressure ratio for aonvergent nozzle. 
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